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CALIBRATION TO NEAR-INFRARED SPECTROPHOTOMETRIC
DETERMINATION OF POWDERED PHARMACEUTICAL
METRONIDAZOLE

Kev words: artificial neural network(ANN), Near infrared spectrophotometry.
diffuse reflectance, the degree of approximation. overfitting,

nondestructive, metronidazole powder

Yulin Ren'. Yuhui Gou'*. Ruixue Ren’. Peiyi Liu' and Yie Guo'

'Department of Chemistry. Jilin University. Changchun 130022,
P.R.China

* Pharmacy. 208th Hospital , Changchun 130026. P.R.China

ABSTRACT

The application of artificial neural networks for pharmaceutical quantitative analysis is
described. Real data sets from near-infrared reflectance spectra of Metronidazole
powdered pharmaceuticals were used to build an artificial neural network to predict
unknown samples. A new network evaluation criterion. termed the degree of
approximation, was employed. The overfitting was discussed. Owing to the beneficial
nonlinear multivariate calibration nature of ANN. the predicted results were reliable and

precise.
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INTRODUCTION

In the pharmaceutical industry. the quality of pharmaceuticals is becoming more
rigid due to government regulations and clinical standards. The qualitative
classification and quantitative analysis of pharmaceuticals in production and sale
procedures are required especially for nondestructive identification and analysis'.
The application of near-infrared (NIR) spectrophotometry in analysis of
pharmaceuticals of various solid dosage forms is a significant advance. because it
requires little or no sample treatment. The practical application of NIR 1s based on
computer technjques and chemometric methods to a large extent. In most cases, the
use of chemometric methods is necessary because of numerous overlapped
absorption bands exiting within the NIR spectral region™.

Due to strong interfering eftects between pharmaceutical components, the
concentrations are not proportional to their relative signals. Therefore a non-linear
mode is required. It is well known that linear calibration techniques like PAR and
PLS have the capability to model nonlinear response by including extra principal
components or latent variables in the éalibration model. however. high levels of
noise in residual principal components or latent variables can render this approach
ineffective . Artificial neural networks exhibit good non-linear calibration nature.
and they also are robust in respect to small variances in the data. such as noise. A
neural network can speed up the calibration process due to its parallel structure®. In
recent years. artificial neural networks have been applied to analyvtical chemistry by
i

many chemists™ . Back propagation (BP) is an ANN algorithm most widely used in

chemometric practice™'*.

In this paper. a back propagation nctwork was used. A sigmoid function was
chosen as the nonlinear transfer function. A new evaluation criterion was
employved' .

The definition of this criterion is given by Equations 1 and 2.

e, /e, Hn/nje [ et (U

where ¢, is the error of the approximation: e, e, are the mean relative errors of
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training set and control set; n,, n, are the numbers of training set and control set; n is
the whole number of known samples: n/n. n/n are the weights contributed to the

error of approximation (e,) by training set and control set. Note that

D,=cle, (2)

where D, is the degree of approximation, and ¢ is a constant number through
which D, is adjusted for optimization. it is very obvious that if the smaller e, is or
the bigger D, is, the more the models of ANN approach the real nature of the data.
Therefore, the effects of both training set and control set are considered in this

evaluation criterion.

EXPERIMENTAL

A Shimadzu® UV-3100 spectrophotometer with an ISR-3100 integrating sphere
was used for the near-IR diffuse reflectance spectra measurement. Data were
transferred to a microcomputer through a RS-232C interface. A Pentinium-based
microcomputer was used for data processing and computation.

Thirty-six Metronidazole powder samples were prepared according to the
prescription. The Metronidazolum. starch, and Mg stearate (steras) powder were
conformable to the pharmacopoeia. The entrance sht of the near-IR
spectrophotometer used was 12 nm and the scan wavelength range was from 1100 to
2500 nm. Two repeated spectral scans were made for each sample and all the spectra
used were the average of the two repeats. The extended delta-bar delta back-
propagation training routines contained in Neural Works Explorer software package

were used.

RESULTS AND DISCUSSION
The conventional near-IR reflectance spectra of pure Metronidazidum. Mg
stearate and starch are shown in FIG. 1. Serious overlaps of the absorption bands can

be seen from the FIG.1.
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FIG1. NIR reflectance spectra
1.pure metronidazotum 2.pure starch 3. pure Mg stearas

The Choice of Control Set

The thirty-six known samples were divided into two groups: the training set and
the control set. It is very import to choose the control set samples properly. First. the
number of samples in the control set should be sufficient to ensure its supervisory
duties. Second, the samples of control set should be distributed evenly among the
training set in order to control the whole training set'’. TABLE 1 shows the

statistical data of components and the contents of the control set and training set.

The Network Design

1. Input and output data
The input layer can be considered as an interface between the external world and
the network. It contains all the information entered into the network. The output
layer produces the output result of the neural network.
The spectral data were directly entered into the network. The wavelength

interval was changed in order to sieve the data. FIG. 2 shows the effect of the
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TABLE 1. Component Contents of Metronidazole (%,2/¢)

Metromidazolum Starch Mg Stearate
max. min. mean max. min. mean max. min. mean
Training set(27) 78.97 60.49 69.63 32.7119.29 2922 1.74 074 114
Control set (9) 78.26 62.43 69.34 32.0127.14 29.62 L4 0,92 1.04
45,
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FIG2. The effect of interval of wavelength on network

1. Mean relative error of training set;
2. Mean relative error of control set;
3. The degree of approximation.

different number of input neurons. The wavelength interval was changed as 13. 20
25. 30. 40, 60, 80 nm, correspondingly, the numbers of input neuron were §1. 61.
49, 41, 31, 21, 16, respectively. When the interval of wavelength was 40 nm. the
input layer contains thirty-one neurons, and the network has the highest D,. When
the input neurons used are reduced, some information will be lost. When the input
neurons are increased, the result is not acceptable because of the limited operational
ability of network and the computations required.

Because there is only one kind of active component in the samples. the output

layer contains one neuron to predict the concentration of metronidazolum.
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FiG 3. The effect of hidden neurons on network
1. Mean relative error of training set
2. Mean relative error of control set
3. The degree of approximation

2. The hidden layer neurons

The number of hidden layer neurons has great effect to the predicted result. The
more the number of hidden layer neuron used, the more non-lineaf degree of fitting
the network has. However, the prediction ability will decline due to overfitting. as
the because the complexity of the network exceeds that of the samples'®. The effect

of hidden neurons is shown in FIG. 3.

The Effect of Momentum and Learning Rate

Momentum o and learning rate n affect the convergence and the result of the
network. Too high v and o lead to network instablility”’. FIG. 4(a) and (b) show the
optimization of the learning rate and the momentum. In FIG.4(b) the convergence
and stability of the training set were measured as the root-mean-square(RMS) error

at the output layer as follows:
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FIG 4.(a) The effect of momument on network
1.Mean realtive error of training set
2 Mean relative error of control set
3.The degree of approximation

006
005!
004}-1

003

0.0 500.0 1.0k 1.5k 2.0k 2.5k 3.0k 3.5k 4.0k 4.5k 50k 55k

Epoch

FIG 4.(b) The convergence situations under different learning rates
Leaningrate; 1. 0.1, 2.0.3; 3.05; 4.0.7;, 5.0.8
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FIG5. The effect of epoch on network
1. Mean relative error of training set;
2. Mean relative error of control set;
3. The degree of approximation

where 17; is the actual output at neuron 7; and 17} is desired output at neuron /.

When the learning rate was more than 0.3. the unstability of the network increased.

Epoch and Qverfitting

The training time is also called the epoch. It is very clear in FIG. S that the error
of the training set declines with epoch. while the error of the control set is increased
after a certain epoch. which indicates the existence of overfitting. The curve of the

degree of approximation displays this rule very well.

Evaluation of the Analytical Accuracy of the Calibration Model

An optimized network model was built through which the concentrations of
metronidazolum in the samples was predicted. The relationship ot the predicted and
real concentrations of the training set and control set is shown in F1G. 6. All samples

are close to the diagonal line. The statistical data are displayed in TABLE 2.
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TABLE 2. The Statistical Result of Predicted Metronidazolum

in Metronidazole Powder Samples

The relationship curve of real concentration to RMS
predicted concentration (%)
Intercept Slope Correlation
Coefficient
training set -0.0005 1.0004 0.9907 0.652
control set 0.0061 1.0860 0.9896 0.801
TABLE 3. Results of unknown samptes obtained by ANN
NO  real value valge relative NO  real value \alge relative
of samples obtained error (%) of samples obtained error
by ANN ) by ANN
%, %o.2/8 v %
o) o) . Cog o w o)
I. 71.34 70.79 -0.76 5. 72.45 7198 -6.65
2. 70.43 69.55 -1.23 6. 68.67 6945 1.14
3. 69.15 70.06 131 7. 66.37 66.79 0.63
4. 67.64 67.00 095 8. 64.58 6532 115
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To verify the reliably of the network model further, eight more metronidazole

powder drugs were prepared. The concentrations of metronidazolum in the samples

are predicted by this BP model. The result is displayed in TABLE 3.

CONCLUSION

ANN is a valuable technique for non-linear calibration modeling. This technique

is very good for use with near-infrared diffuse reflectance spectra of powders. NIR

combined with ANN can be used to nondestructively analyze pharmaceuticals fast

and reliably.
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